Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1341842, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435695

RESUMO

As the climate changes, global systems have become increasingly unstable and unpredictable. This is particularly true for many disease systems, including subtypes of highly pathogenic avian influenzas (HPAIs) that are circulating the world. Ecological patterns once thought stable are changing, bringing new populations and organisms into contact with one another. Wild birds continue to be hosts and reservoirs for numerous zoonotic pathogens, and strains of HPAI and other pathogens have been introduced into new regions via migrating birds and transboundary trade of wild birds. With these expanding environmental changes, it is even more crucial that regions or counties that previously did not have surveillance programs develop the appropriate skills to sample wild birds and add to the understanding of pathogens in migratory and breeding birds through research. For example, little is known about wild bird infectious diseases and migration along the Mediterranean and Black Sea Flyway (MBSF), which connects Europe, Asia, and Africa. Focusing on avian influenza and the microbiome in migratory wild birds along the MBSF, this project seeks to understand the determinants of transboundary disease propagation and coinfection in regions that are connected by this flyway. Through the creation of a threat reduction network for avian diseases (Avian Zoonotic Disease Network, AZDN) in three countries along the MBSF (Georgia, Ukraine, and Jordan), this project is strengthening capacities for disease diagnostics; microbiomes; ecoimmunology; field biosafety; proper wildlife capture and handling; experimental design; statistical analysis; and vector sampling and biology. Here, we cover what is required to build a wild bird infectious disease research and surveillance program, which includes learning skills in proper bird capture and handling; biosafety and biosecurity; permits; next generation sequencing; leading-edge bioinformatics and statistical analyses; and vector and environmental sampling. Creating connected networks for avian influenzas and other pathogen surveillance will increase coordination and strengthen biosurveillance globally in wild birds.

2.
Vector Borne Zoonotic Dis ; 24(1): 17-26, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37883639

RESUMO

Background: Antibiotic resistance is becoming an increasingly urgent problem for human and animal health due to the widespread use of antibiotics in medicine, veterinary medicine, and agriculture. At the same time, the natural reservoirs of antibiotic-resistant pathogens remain unclear. Wild birds may play a role in this due to their biology. Escherichia coli is a representative indicator pathogen for antibiotic resistance studies. Materials and Methods: In 2020-2021, sampling of feces and cloacal swabs from six species of wild waterfowl (Eurasian wigeon Anas penelope, Eurasian teal Anas crecca, white-fronted goose Anser albifrons, red-breasted goose Rufibrenta ruficollis, graylag goose Anser anser, shelduck Tadorna tadorna) and from two species of domestic waterfowl (ducks and geese) was conducted in the Kherson, Zaporizhzhia, Odesa, Kharkiv, and Cherkasy regions of Ukraine. Biological material was collected, stored, and transported in cryotubes with transport medium (brain heart infusion broth [BHIB] with the addition of 15% glycerol) in liquid nitrogen. Bacteriological studies were carried out according to standard methods for the isolation and identification of microorganisms. Drug resistance of E. coli was carried out by a standard disk diffusion method. Results: Bacteria representing six families (Enterobacteriaceae, Yersiniaceae, Morganellaceae, Bacillaceae, Pseudomonadaceae, Staphylococcaceae) were isolated from clinically healthy wild birds (wigeon, Eurasian teal, white-fronted goose, red-breasted goose, mallard, graylag goose, shelduck) in the southern regions of Ukraine with isolation rates ranging from 26.7% to 100%. A total of 19 E. coli isolates were cultured from 111 samples from wild birds, and 30 isolates of E. coli were cultured from 32 poultry samples. E. coli was isolated from birds of all species. The prevalence of E. coli ranged from 5.0% to 33.3% in wild waterfowl and from 90.9% to 100% in domestic waterfowl. The prevalence of multidrug-resistant (MDR) E. coli ranged from 10.0% to 31.8% in wild and domestic waterfowl: 3 of 15 (20%) specimens from wild mallard were MDR in the Kherson region, as well as 7 of 22 domestic ducks (31.8%) and 1 of 10 geese (10%) in the Kharkiv and Cherkasy regions. Isolates from wild birds were the most resistant to ampicillin (AMP), amoxiclav (AMC), amoxicillin (AMX), doxycycline (DO), and chloramphenicol (C). Isolates from poultry were resistant to ampicillin, amoxiclav, doxycycline, amoxicillin, chloramphenicol, and enrofloxacin (EX). Most of the other E. coli isolates from wild waterfowl were classified as non-multidrug-resistant (non-MDR) forms. Analysis of antibiotic sensitivity phenotypes showed that only four antibiotic-resistant phenotypes were detected among non-MDR bacteria, whereas among the MDR bacteria, two antibiotic-resistant phenotypes were detected in mallards and six in domestic waterfowl. Conclusion: The results of this study showed that wild waterfowl in Ukraine, which live in natural conditions and do not receive any antimicrobial drugs, are carriers of E. coli that are resistant to a number of antibiotics that are actively used in industrial poultry.


Assuntos
Antibacterianos , Escherichia coli , Animais , Humanos , Antibacterianos/farmacologia , Ucrânia/epidemiologia , Doxiciclina , Animais Selvagens , Patos , Gansos , Amoxicilina , Ampicilina , Cloranfenicol
3.
Microbiol Resour Announc ; 12(6): e0019723, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37255430

RESUMO

We report the complete genome sequence of an avian orthoavulavirus 13 strain, isolated from a white-fronted goose in the Odesa region of Ukraine in 2013. The detection of avian orthoavulavirus 13 in Ukraine confirms that the geographic distribution of this virus extends beyond Asia.

4.
Viruses ; 15(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36992408

RESUMO

Emerging RNA virus infections are a growing concern among domestic poultry industries due to the severe impact they can have on flock health and economic livelihoods. Avian paramyxoviruses (APMV; avulaviruses, AaV) are pathogenic, negative-sense RNA viruses that cause serious infections in the respiratory and central nervous systems. APMV was detected in multiple avian species during the 2017 wild bird migration season in Ukraine and studied using PCR, virus isolation, and sequencing. Of 4090 wild bird samples collected, mostly from southern Ukraine, eleven isolates were grown in ovo and identified for APMV serotype by hemagglutinin inhibition test as: APMV-1, APMV-4, APMV-6, and APMV-7. To build One Health's capacity to characterize APMV virulence and analyze the potential risks of spillover to immunologically naïve populations, we sequenced virus genomes in veterinary research labs in Ukraine using a nanopore (MinION) platform. RNA was extracted and amplified using a multiplex tiling primer approach to specifically capture full-length APMV-1 (n = 5) and APMV-6 (n = 2) genomes at high read depth. All APMV-1 and APMV-6 fusion (F) proteins possessed a monobasic cleavage site, suggesting these APMVs were likely low virulence, annually circulating strains. Utilization of this low-cost method will identify gaps in viral evolution and circulation in this understudied but important critical region for Eurasia.


Assuntos
Avulavirus , Vírus da Doença de Newcastle , Animais , Ucrânia/epidemiologia , Filogenia , Animais Selvagens , Aves
5.
Front Vet Sci ; 10: 1026296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36742982

RESUMO

Newcastle disease virus (NDV) infects a wide range of bird species worldwide and is of importance to the poultry industry. Although certain virus genotypes are clearly associated with wild bird species, the role of those species in the movement of viruses and the migratory routes they follow is still unclear. In this study, we performed a phylogenetic analysis of nineteen NDV sequences that were identified among 21,924 samples collected from wild and synanthropic birds from different regions of Ukraine from 2006 to 2015 and compared them with isolates from other continents. In synanthropic birds, NDV strains of genotype II, VI, VII, and XXI of class II were detected. The fusion gene sequences of these strains were similar to strains detected in birds from different geographical regions of Europe and Asia. However, it is noteworthy to mention the isolation of vaccine viruses from synanthropic birds, suggesting the possibility of their role in viral transmission from vaccinated poultry to wild birds, which may lead to the further spreading of vaccine viruses into other regions during wild bird migration. Moreover, here we present the first publicly available complete NDV F gene from a crow (genus Corvus). Additionally, our phylogenetic results indicated a possible connection of Ukrainian NDV isolates with genotype XXI strains circulating in Kazakhstan. Among strains from wild birds, NDVs of genotype 1 of class I and genotype I of class II were detected. The phylogenetic analysis highlighted the possible exchange of these NDV strains between wild waterfowl from the Azov-Black Sea region of Ukraine and waterfowl from different continents, including Europe, Asia, and Africa.

6.
Parasit Vectors ; 15(1): 443, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434644

RESUMO

BACKGROUND: Bats (Mammalia: Chiroptera) serve as natural reservoirs for many zoonotic pathogens worldwide, including vector-borne pathogens. However, bat-associated parasitic arthropods and their microbiota are thus far not thoroughly described in many regions across the globe, nor is their role in the spillover of pathogens to other vertebrate species well understood. Basic epidemiological research is needed to disentangle the complex ecological interactions among bats, their specific ectoparasites and microorganisms they harbor. Some countries, such as Ukraine, are particularly data-deficient in this respect as the ectoparasitic fauna is poorly documented there and has never been screened for the presence of medically important microorganisms. Therefore, the aims of this study were to provide first data on this topic. METHODS: A total of 239 arthropod specimens were collected from bats. They belonged to several major groups of external parasites, including soft ticks, fleas, and nycteribiid flies from six chiropteran species in Northeastern Ukraine. The ectoparasites were individually screened for the presence of DNA of Rickettsia spp., Anaplasma/Ehrlichia spp., Bartonella spp., Borrelia spp., and Babesia spp. with conventional PCRs. Positive samples were amplified at several loci, sequenced for species identification, and subjected to phylogenetic analysis. RESULTS: Rickettsia DNA was detected exclusively in specimens of the soft tick, Carios vespertilionis (7 out of 43 or 16.3%). Sequencing and phylogenetic analysis revealed high similarity to sequences from Rickettsia parkeri and several other Rickettsia species. Bacteria from the family Anaplasmataceae were detected in all groups of the ectoparasites (51%, 122/239 samples), belonging to the genera Anaplasma, Ehrlichia, and Wolbachia. The detection of Bartonella spp. was successful only in fleas (Nycteridopsylla eusarca) and bat flies (Nycteribia koleantii, N. pedicularia), representing 12.1% (29/239) of the collected ectoparasites. No DNA of Babesia or Borrelia species was identified in the samples. CONCLUSIONS: We report for the first time in Ukraine the molecular detection of several bacterial agents in bat ectoparasites collected from six species of bats. The data presented extend the knowledge on the distribution of ectoparasite species in bats and their involvement in potentially circulating agents pathogenic for humans and vertebrate animals.


Assuntos
Argas , Argasidae , Babesia , Bartonella , Borrelia , Infestações por Pulgas , Sifonápteros , Animais , Humanos , Filogenia , Ucrânia/epidemiologia , Argas/genética , Bartonella/genética , Ehrlichia/genética , Anaplasma/genética , Babesia/genética
7.
Sci Total Environ ; 824: 153632, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35124031

RESUMO

Carbapenem resistant Enterobacteriaceae (CRE) are a threat to public health globally, yet the role of the environment in the epidemiology of CRE remains elusive. Given that wild birds can acquire CRE, likely from foraging in anthropogenically impacted areas, and may aid in the maintenance and dissemination of CRE in the environment, a spatiotemporal comparison of isolates from different regions and timepoints may be useful for elucidating epidemiological information. Thus, we characterized the genomic diversity of CRE from fecal samples opportunistically collected from gulls (Larus spp.) inhabiting Alaska (USA), Chile, Spain, Turkey, and Ukraine and from black kites (Milvus migrans) sampled in Pakistan and assessed evidence for spatiotemporal patterns of dissemination. Within and among sampling locations, a high diversity of carbapenemases was found, including Klebsiella pneumoniae carbapenemase (KPC), New Delhi metallo-beta-lactamase (NDM), oxacillinase (OXA), and Verona integron Metallo beta-lactamase (VIM). Although the majority of genomic comparisons among samples did not provide evidence for spatial dissemination, we did find strong evidence for dissemination among Alaska, Spain, and Turkey. We also found strong evidence for temporal dissemination among samples collected in Alaska and Pakistan, though the majority of CRE clones were transitory and were not repeatedly detected among locations where samples were collected longitudinally. Carbapenemase-producing hypervirulent K. pneumoniae was isolated from gulls in Spain and Ukraine and some isolates harbored antimicrobial resistance genes conferring resistance to up to 10 different antibiotic classes, including colistin. Our results are consistent with local acquisition of CRE by wild birds with spatial dissemination influenced by intermediary transmission routes, likely involving humans. Furthermore, our results support the premise that anthropogenically-associated wild birds may be good sentinels for understanding the burden of clinically-relevant antimicrobial resistance in the local human population.


Assuntos
Anti-Infecciosos , Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Enterobacteriaceae , Animais , Animais Selvagens , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Aves , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/epidemiologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
8.
Vector Borne Zoonotic Dis ; 21(12): 979-988, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34958264

RESUMO

Highly pathogenic avian influenza viruses (HPAIV) can be carried long distances by migratory wild birds and by poultry trade. Highly pathogenic avian influenza (HPAI) is often lethal in domestic poultry and can sporadically infect and cause severe respiratory or systemic disease in other species including humans. Since 2003, the H5 subtype of HPAIV have spread from epicenters in China to neighboring regions in East and Southeast Asia, and across Central Asia to the Indian subcontinent, Europe, Africa, and North America. Outbreaks of H5N1 HPAIV struck poultry in Ukraine in 2005. In 2016, A H5N8 clade 2.3.4.4b HPAIV outbreaks occurred in wild and domestic birds in Ukraine concurrently with outbreaks in Central Europe, Russia, and the Middle East. We report outbreaks of HPAI in domestic backyard poultry in (2016-2017) in the southern region of Ukraine, in proximity to mass gathering sites for migratory waterfowl including mute swans (Cygnus olor). All eight genome segments of three novel H5N8 HPAIV isolated in November 2016 from two domestic backyard chickens (Gallus gallus) and one backyard mallard duck (Anas platyrhynchos) found dead of HPAI in Azov-Black Sea region of Ukraine were cladistically related to H5N8 2.3.4.4b HPAI viruses isolated from wild shelduck (Tadorna tadorna) and white-fronted goose (Anser albifrons) in Askania Nova Biopreserve (Kherson district, Ukraine) in 2016-2017 and to other contemporary H5N8 HPAIV strains sequenced from wild birds and poultry in Eurasia. Amino acid variations in hemagglutinin were outside of the polybasic cleavage site (PLREKRRKR/GLF), and D224G suggested avian-like receptor binding specificity; neuraminidase did not have mutations characteristic of oseltamivir drug resistance. Outbreaks of HPAI in Ukraine highlight the continual need for biosurveillance and genomic sequencing of avian influenza viruses along wild bird flyways and interfaces with domestic poultry in Eurasia.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A Subtipo H5N8 , Influenza Aviária , Animais , Animais Selvagens , Galinhas , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N8/genética , Influenza Aviária/epidemiologia , Eventos de Massa , Filogenia , Ucrânia/epidemiologia
9.
Avian Dis ; 63(sp1): 235-245, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713401

RESUMO

There have been three waves of highly pathogenic avian influenza (HPAI) outbreaks in commercial, backyard poultry, and wild birds in Ukraine. The first (2005-2006) and second (2008) waves were caused by H5N1 HPAI virus, with 45 outbreaks among commercial poultry (chickens) and backyard fowl (chickens, ducks, and geese) in four regions of Ukraine (AR Crimea, Kherson, Odesa, and Sumy Oblast). H5N1 HPAI viruses were isolated from dead wild birds: cormorants (Phalacrocorax carbo) and great crested grebes (Podiceps cristatus) in 2006 and 2008. The third HPAI wave consisted of nine outbreaks of H5N8 HPAI in wild and domestic birds, beginning in November 2016 in the central and south regions (Kherson, Odesa, Chernivtsi, Ternopil, and Mykolaiv Oblast). H5N8 HPAI virus was detected in dead mute swans (Cygnus olor), peacocks (Pavo cristatus) (in zoo), ruddy shelducks (Tadorna ferruginea), white-fronted geese (Anser albifrons), and from environmental samples in 2016 and 2017. Wide wild bird surveillance for avian influenza (AI) virus was conducted from 2006 to 2016 in Ukraine regions suspected of being intercontinental (north-south and east-west) flyways. A total of 21 511 samples were collected from 105 species of wild birds representing 27 families and 11 orders. Ninety-five avian influenza (AI) viruses were isolated (including one H5N2 LPAI virus in 2010) from wild birds with a total of 26 antigenic hemagglutinin (HA) and neuraminidase (NA) combinations. Fifteen of 16 known avian HA subtypes were isolated. Two H5N8 HPAI viruses (2016-2017) and two H5N2 LPAI viruses (2016) were isolated from wild birds and environmental samples (fresh bird feces) during surveillance before the outbreak in poultry in 2016-2017. The Ukrainian H5N1, H5N8 HPAI, and H5N2 LPAI viruses belong to different H5 phylogenetic groups. Our results demonstrate the great diversity of AI viruses in wild birds in Ukraine, as well as the importance of this region for studying the ecology of avian influenza.


Virus de influenza aviar del subtipo H5 altamente patógenos y de baja patogenicidad en aves silvestres en Ucrania. Ha habido tres oleadas de brotes de influenza aviar altamente patógena en aves comerciales, de traspatio y en aves silvestres en Ucrania. La primera (2005-2006) y la segunda (2008) fueron causadas por el virus de influenza aviar de alta patogenicidad H5N1, con 45 brotes en aves comerciales (pollos) y aves de traspatio (pollos, patos y gansos) en cuatro regiones de Ucrania (AR Crimea, Kherson, Odesa y Sumy Oblast). Los virus de alta patogenicidad H5N1se aislaron de aves silvestres muertas: cormoranes (Phalacrocorax carbo) y de somormujos lavanco (Podiceps cristatus) en 2006 y 2008. La tercera ola del virus de influenza aviar de alta patogenicidad consistió en nueve brotes del virus de alta patogenicidad subtipo H5N8 en aves silvestres y domésticas, a partir de noviembre de 2016 en las regiones central y sur (Kherson, Odesa, Chernivtsi, Ternopil y Mykolaiv Oblast). Se detectó el virus al patogenicidad H5N8 en cisnes blancos muertos (Cygnus olor), pavos reales (Pavo cristatus) (en zoológicos), tarros canelos (Tadorna ferruginea), gansos caretos (Anser albifrons) y en muestras ambientales en 2016 y 2017. Una vigilancia más amplia de aves silvestres para detectar el virus de la influenza aviar se realizó entre 2006 y 2016 en las regiones de Ucrania sospechosas de ser rutas migratorias intercontinentales (norte-sur y este-oeste). Se recolectaron un total de 21,511 muestras de 105 especies de aves silvestres que representan a 27 familias y 11 órdenes. Se aislaron ochenta y dos virus de influenza aviar de baja patogenicidad (incluido un virus H5N2 de baja patogenicidad del 2010) de aves silvestres con un total de 23 combinaciones antigénicas de hemaglutininas (HA) y neuraminidasas (NA). Se aislaron quince de los 16 subtipos de HA aviar conocidos. Dos virus de alta patogenicidad H5N8 y dos virus H5N2 de baja patogenicidad se aislaron de aves silvestres vivas y de muestras ambientales (heces de aves frescas) durante la vigilancia antes del brote en avicultura. Los virus ucranianos de alta patogenicidad H5N1, H5N8 y de baja patogenicidad H5N2 pertenecen a diferentes grupos filogenéticos de H5. Estos resultados demuestran la gran diversidad de virus de la influenza aviar en aves silvestres en Ucrania, así como la importancia de esta región para estudiar la ecología de la influenza aviar.


Assuntos
Aves , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Animais , Animais Selvagens , Animais de Zoológico , Influenza Aviária/virologia , Filogenia , Prevalência , Ucrânia/epidemiologia
10.
Viruses ; 11(7)2019 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-31337066

RESUMO

Avian orthoavulavirus 13 (AOAV-13), also named avian paramyxovirus 13 (APMV-13), has been found sporadically in wild birds around the world ever since the discovery of AOAV-13 (AOAV-13/wild goose/Shimane/67/2000) in a wild goose from Japan in 2000. However, there are no reports of AOAV-13 in China. In the present study, a novel AOAV-13 virus (AOAV-13/wild goose/China/Hubei/V93-1/2015), isolated from a wild migratory waterfowl in a wetland of Hubei province of China, during active surveillance from 2013 to 2018, was biologically and genetically characterized. Phylogenetic analyses demonstrated a very close genetic relationship among all AOAV-13 strains, as revealed by very few genetic variations. Moreover, pathogenicity tests indicated that the V93-1 strain is a low virulent virus for chickens. However, the genome of the V93-1 virus was found to be 16,158 nucleotides (nt) in length, which is 12 nt or 162 nt longer than the other AOAV-13 strains that have been reported to date. The length difference of 12 nt in strain V93-1 is due to the existence of three repeats of the conserved sequence, "AAAAAT", in the 5'-end trailer of the genome. Moreover, the HN gene of the V93-1 virus is 2070 nt in size, encoding 610 aa, which is the same size as the AOAV-13 strain from Japan, whereas that of two strains from Ukraine and Kazakhstan are 2080 nt in length, encoding 579 aa. We describe a novel AOAV-13 in migratory waterfowl in China, which suggests that diversified trailer region sequences and HN gene lengths exist within serotype AOAV-13, and highlight the need for its constant surveillance in poultry from live animal markets, and especially migratory birds.


Assuntos
Animais Selvagens/virologia , Infecções por Avulavirus/veterinária , Avulavirus/classificação , Genoma Viral , Proteína HN/genética , Migração Animal , Animais , Avulavirus/isolamento & purificação , Galinhas/virologia , China , Patos/virologia , Gansos/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Sorogrupo
11.
Avian Dis ; 63(sp1): 219-229, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31131580

RESUMO

There have been three waves of highly pathogenic avian influenza (HPAI) outbreaks in commercial, backyard poultry, and wild birds in Ukraine. The first (2005-2006) and second (2008) waves were caused by H5N1 HPAI virus, with 45 outbreaks among commercial poultry (chickens) and backyard fowl (chickens, ducks, and geese) in four regions of Ukraine (AR Crimea, Kherson, Odesa, and Sumy Oblast). H5N1 HPAI viruses were isolated from dead wild birds: cormorants (Phalacrocorax carbo) and great crested grebes (Podiceps cristatus) in 2006 and 2008. The third HPAI wave consisted of nine outbreaks of H5N8 HPAI in wild and domestic birds, beginning in November 2016 in the central and south regions (Kherson, Odesa, Chernivtsi, Ternopil, and Mykolaiv Oblast). H5N8 HPAI virus was detected in dead mute swans (Cygnus olor), peacocks (Pavo cristatus) (in zoo), ruddy shelducks (Tadorna ferruginea), white-fronted geese (Anser albifrons), and from environmental samples in 2016 and 2017. Wide wild bird surveillance for avian influenza (AI) virus was conducted from 2006 to 2016 in Ukraine regions suspected of being intercontinental (north-south and east-west) flyways. A total of 21 511 samples were collected from 105 species of wild birds representing 27 families and 11 orders. Ninety-five avian influenza (AI) viruses were isolated (including one H5N2 LPAI virus in 2010) from wild birds with a total of 26 antigenic hemagglutinin (HA) and neuraminidase (NA) combinations. Fifteen of 16 known avian HA subtypes were isolated. Two H5N8 HPAI viruses (2016-2017) and two H5N2 LPAI viruses (2016) were isolated from wild birds and environmental samples (fresh bird feces) during surveillance before the outbreak in poultry in 2016-2017. The Ukrainian H5N1, H5N8 HPAI, and H5N2 LPAI viruses belong to different H5 phylogenetic groups. Our results demonstrate the great diversity of AI viruses in wild birds in Ukraine, as well as the importance of this region for studying the ecology of avian influenza.


Virus de influenza aviar del subtipo H5 altamente patógenos y de baja patogenicidad en aves silvestres en Ucrania. Ha habido tres oleadas de brotes de influenza aviar altamente patógena en aves comerciales, de traspatio y en aves silvestres en Ucrania. La primera (2005-2006) y la segunda (2008) fueron causadas por el virus de influenza aviar de alta patogenicidad H5N1, con 45 brotes en aves comerciales (pollos) y aves de traspatio (pollos, patos y gansos) en cuatro regiones de Ucrania (AR Crimea, Kherson, Odesa y Sumy Oblast). Los virus de alta patogenicidad H5N1se aislaron de aves silvestres muertas: cormoranes (Phalacrocorax carbo) y de somormujos lavanco (Podiceps cristatus) en 2006 y 2008. La tercera ola del virus de influenza aviar de alta patogenicidad consistió en nueve brotes del virus de alta patogenicidad subtipo H5N8 en aves silvestres y domésticas, a partir de noviembre de 2016 en las regiones central y sur (Kherson, Odesa, Chernivtsi, Ternopil y Mykolaiv Oblast). Se detectó el virus al patogenicidad H5N8 en cisnes blancos muertos (Cygnus olor), pavos reales (Pavo cristatus) (en zoológicos), tarros canelos (Tadorna ferruginea), gansos caretos (Anser albifrons) y en muestras ambientales en 2016 y 2017. Una vigilancia más amplia de aves silvestres para detectar el virus de la influenza aviar se realizó entre 2006 y 2016 en las regiones de Ucrania sospechosas de ser rutas migratorias intercontinentales (norte-sur y este-oeste). Se recolectaron un total de 21,511 muestras de 105 especies de aves silvestres que representan a 27 familias y 11 órdenes. Se aislaron ochenta y dos virus de influenza aviar de baja patogenicidad (incluido un virus H5N2 de baja patogenicidad del 2010) de aves silvestres con un total de 23 combinaciones antigénicas de hemaglutininas (HA) y neuraminidasas (NA). Se aislaron quince de los 16 subtipos de HA aviar conocidos. Dos virus de alta patogenicidad H5N8 y dos virus H5N2 de baja patogenicidad se aislaron de aves silvestres vivas y de muestras ambientales (heces de aves frescas) durante la vigilancia antes del brote en avicultura. Los virus ucranianos de alta patogenicidad H5N1, H5N8 y de baja patogenicidad H5N2 pertenecen a diferentes grupos filogenéticos de H5. Estos resultados demuestran la gran diversidad de virus de la influenza aviar en aves silvestres en Ucrania, así como la importancia de esta región para estudiar la ecología de la influenza aviar.


Assuntos
Aves , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Vírus da Influenza A/fisiologia , Influenza Aviária/epidemiologia , Animais , Animais Selvagens , Animais de Zoológico , Influenza Aviária/virologia , Filogenia , Prevalência , Ucrânia/epidemiologia
12.
BMC Vet Res ; 13(1): 291, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28950869

RESUMO

BACKGROUND: The remarkable diversity and mobility of Newcastle disease viruses (NDV) includes virulent viruses of genotype VI. These viruses are often referred to as pigeon paramyxoviruses 1 because they are normally isolated and cause clinical disease in birds from the Columbidae family. Genotype VI viruses occasionally infect, and may also cause clinical disease in poultry. Thus, the evolution, current spread and detection of these viruses are relevant to avian health. RESULTS: Here, we describe the isolation and genomic characterization of six Egyptian (2015), four Pakistani (2015), and two Ukrainian (2007, 2013) recent pigeon-derived NDV isolates of sub-genotype VIg. These viruses are closely related to isolates from Kazakhstan, Nigeria and Russia. In addition, eight genetically related NDV isolates from Pakistan (2014-2016) that define a new sub-genotype (VIm) are described. All of these viruses, and the ancestral Bulgarian (n = 2) and South Korean (n = 2) viruses described here, have predicted virulent cleavage sites of the fusion protein, and those selected for further characterization have intracerebral pathogenicity index assay values characteristic of NDV of genotype VI (1.31 to 1.48). A validated matrix gene real-time RT-PCR (rRT-PCR) NDV test detect all tested isolates. However, the validated rRT-PCR test that is normally used to identify the virulent fusion gene fails to detect the Egyptian and Ukrainian viruses due to mismatches in primers and probe. A new rapid rRT-PCR test to determine the presence of virulent cleavage sites for viruses from sub-genotypes VIg was developed and evaluated on these and other viruses. CONCLUSIONS: We describe the almost simultaneous circulation and continuous evolution of genotype VI Newcastle disease viruses in distant locations, suggesting epidemiological connections among three continents. As pigeons are not migratory, this study suggests the need to understand the possible role of human activity in the dispersal of these viruses. Complete genomic characterization identified previously unrecognized genetic diversity that contributes to diagnostic failure and will facilitate future evolutionary studies. These results highlight the importance of conducting active surveillance on pigeons worldwide and the need to update existent rapid diagnostic protocols to detect emerging viral variants and help manage the disease in affected regions.


Assuntos
Evolução Biológica , Columbidae/virologia , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/isolamento & purificação , África , Animais , Ásia , Europa Oriental , Genoma Viral , Genótipo , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Proteínas Virais de Fusão/genética , Virulência , Sequenciamento Completo do Genoma
13.
PLoS One ; 11(9): e0162484, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626272

RESUMO

Our study demonstrates the repeated isolation of vaccine-derived Newcastle disease viruses from different species of wild birds across four continents from 1997 through 2014. The data indicate that at least 17 species from ten avian orders occupying different habitats excrete vaccine-derived Newcastle disease viruses. The most frequently reported isolates were detected among individuals in the order Columbiformes (n = 23), followed in frequency by the order Anseriformes (n = 13). Samples were isolated from both free-ranging (n = 47) and wild birds kept in captivity (n = 7). The number of recovered vaccine-derived viruses corresponded with the most widely utilized vaccines, LaSota (n = 28) and Hitchner B1 (n = 19). Other detected vaccine-derived viruses resembled the PHY-LMV2 and V4 vaccines, with five and two cases, respectively. These results and the ubiquitous and synanthropic nature of wild pigeons highlight their potential role as indicator species for the presence of Newcastle disease virus of low virulence in the environment. The reverse spillover of live agents from domestic animals to wildlife as a result of the expansion of livestock industries employing massive amounts of live virus vaccines represent an underappreciated and poorly studied effect of human activity on wildlife.


Assuntos
Animais Selvagens , Aves/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Filogenia
14.
Arch Virol ; 161(12): 3345-3353, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27581808

RESUMO

Here, we report the circulation of highly related virulent Newcastle disease viruses (NDV) in Bulgaria and Ukraine from 2002 until 2013. All of these NDV isolates have the same virulence-associated cleavage site ("113RQKR↓F117"), and selected ones have intracerebral pathogenicity index values ranging from 1.61 to 1.96. These isolates are most closely related to viruses circulating in Eastern Europe, followed by viruses isolated in Asia during the same period of time. Interestingly, the majority of the viruses were isolated from backyard poultry, suggesting the possibility of a "domestic" or "urban" cycle of maintenance. The molecular characterization of the nucleotide sequence of the complete fusion protein gene of the studied viruses suggests continued circulation of virulent NDV of sub-genotype VIId in Eastern Europe, with occasional introductions from Asia. Furthermore, the high level of genetic similarity among those isolates suggests that the NDV isolates of sub-genotype VIId from Bulgaria and Ukraine may have been part of a broader epizootic process in Eastern Europe rather than separate introductions from Asia or Africa. The continuous monitoring of backyard poultry flocks for the presence of circulating virulent NDV strains will allow early identification of Newcastle disease outbreaks.


Assuntos
Galinhas/virologia , Genótipo , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/isolamento & purificação , Doenças das Aves Domésticas/virologia , Animais , Bulgária/epidemiologia , Análise por Conglomerados , Epidemiologia Molecular , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/patogenicidade , Filogenia , Doenças das Aves Domésticas/epidemiologia , Análise de Sequência de DNA , Homologia de Sequência , Ucrânia/epidemiologia , Proteínas Virais de Fusão/genética
15.
Genome Announc ; 4(4)2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27469958

RESUMO

Here, we report the complete genome sequence of a virus of a putative new serotype of avian paramyxovirus (APMV). The virus was isolated from a white-fronted goose in Ukraine in 2011 and designated white-fronted goose/Ukraine/Askania-Nova/48-15-02/2011. The genomic characterization of the isolate suggests that it represents the novel avian paramyxovirus group APMV 13.

16.
Avian Dis ; 60(1 Suppl): 365-77, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27309081

RESUMO

Wild bird surveillance for avian influenza virus (AIV) was conducted from 2001 to 2012 in the Azov - Black Sea region of the Ukraine, considered part of the transcontinental wild bird migration routes from northern Asia and Europe to the Mediterranean, Africa, and southwest Asia. A total of 6281 samples were collected from wild birds representing 27 families and eight orders for virus isolation. From these samples, 69 AIVs belonging to 15 of the 16 known hemagglutinin (HA) subtypes and seven of nine known neuraminidase (NA) subtypes were isolated. No H14, N5, or N9 subtypes were identified. In total, nine H6, eight H1, nine H5, seven H7, six H11, six H4, five H3, five H10, four H8, three H2, three H9, one H12, one H13, one H15, and one H16 HA subtypes were isolated. As for the NA subtypes, twelve N2, nine N6, eight N8, seven N7, six N3, four N4, and one undetermined were isolated. There were 27 HA and NA antigen combinations. All isolates were low pathogenic AIV except for eight highly pathogenic (HP) AIVs that were isolated during the H5N1 HPAI outbreaks of 2006-08. Sequencing and phylogenetic analysis of the HA genes revealed epidemiological connections between the Azov-Black Sea regions and Europe, Russia, Mongolia, and Southeast Asia. H1, H2, H3, H7, H8, H6, H9, and H13 AIV subtypes were closely related to European, Russian, Mongolian, and Georgian AIV isolates. H10, H11, and H12 AIV subtypes were epidemiologically linked to viruses from Europe and Southeast Asia. Serology conducted on serum and egg yolk samples also demonstrated previous exposure of many wild bird species to different AIVs. Our results demonstrate the great genetic diversity of AIVs in wild birds in the Azov-Black Sea region as well as the importance of this region for monitoring and studying the ecology of influenza viruses. This information furthers our understanding of the ecology of avian influenza viruses in wild bird species.


Assuntos
Aves/virologia , Influenza Aviária/virologia , Orthomyxoviridae/genética , Orthomyxoviridae/isolamento & purificação , Animais , Animais Selvagens/sangue , Animais Selvagens/virologia , Anticorpos Antivirais/sangue , Aves/sangue , Mar Negro , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Influenza Aviária/sangue , Influenza Aviária/epidemiologia , Orthomyxoviridae/classificação , Orthomyxoviridae/imunologia , Filogenia , Ucrânia/epidemiologia
17.
Infect Genet Evol ; 40: 104-108, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26925702

RESUMO

Avian paramyxovirus serotype 4 (APMV-4) is a single stranded RNA virus that has most often been isolated from waterfowl. Limited information has been reported regarding the prevalence, pathogenicity, and genetic diversity of AMPV-4. To assess the intercontinental dispersal of this viral agent, we sequenced the fusion gene of 58 APMV-4 isolates collected in the United States, Japan and the Ukraine and compared them to all available sequences on GenBank. With only a single exception the phylogenetic clades of APMV-4 sequences were monophyletic with respect to their continents of origin (North America, Asia and Europe). Thus, we detected limited evidence for recent intercontinental dispersal of APMV-4 in this study.


Assuntos
Infecções por Avulavirus/transmissão , Avulavirus/genética , Aves/virologia , Análise de Sequência de RNA/métodos , Animais , Avulavirus/classificação , Infecções por Avulavirus/veterinária , Evolução Molecular , Japão , Filogenia , Ucrânia , Estados Unidos , Proteínas Virais/genética
18.
Arch Virol ; 161(3): 605-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26650037

RESUMO

Since the first detection of H15 avian influenza viruses (AIVs) in Australia in 1979, only seven H15 strains have been reported. A new H15 AIV was detected in Ukraine in 2010, carrying the unique HA-NA subtype combination H15N7. This virus replicated efficiently in chicken eggs, and antisera against it reacted strongly with the homologous antigen, but with lower titers when using the reference Australian antigen. The amino acid motifs of the HA cleavage site and receptor-binding site were different from those in the Australian viruses. The new virus, together with an H15 virus from Siberia from 2008, constitutes a new clade of H15 AIV isolates.


Assuntos
Variação Genética , Genótipo , Vírus da Influenza A/classificação , Vírus da Influenza A/genética , Influenza Aviária/virologia , Animais , Ásia , Galinhas , Europa (Continente) , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/fisiologia , Óvulo/virologia , Sorogrupo , Replicação Viral
19.
Appl Environ Microbiol ; 80(17): 5427-38, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24973063

RESUMO

Despite the existence of 10 avian paramyxovirus (APMV) serotypes, very little is known about the distribution, host species, and ecological factors affecting virus transmission. To better understand the relationship among these factors, we conducted APMV wild bird surveillance in regions of Ukraine suspected of being intercontinental (north to south and east to west) flyways. Surveillance for APMV was conducted in 6,735 wild birds representing 86 species and 8 different orders during 2006 to 2011 through different seasons. Twenty viruses were isolated and subsequently identified as APMV-1 (n = 9), APMV-4 (n = 4), APMV-6 (n = 3), and APMV-7 (n = 4). The highest isolation rate occurred during the autumn migration (0.61%), with viruses isolated from mallards, teals, dunlins, and a wigeon. The rate of isolation was lower during winter (December to March) (0.32%), with viruses isolated from ruddy shelducks, mallards, white-fronted geese, and a starling. During spring migration, nesting, and postnesting (April to August) no APMV strains were isolated out of 1,984 samples tested. Sequencing and phylogenetic analysis of four APMV-1 and two APMV-4 viruses showed that one APMV-1 virus belonging to class 1 was epidemiologically linked to viruses from China, three class II APMV-1 viruses were epidemiologically connected with viruses from Nigeria and Luxembourg, and one APMV-4 virus was related to goose viruses from Egypt. In summary, we have identified the wild bird species most likely to be infected with APMV, and our data support possible intercontinental transmission of APMVs by wild birds.


Assuntos
Infecções por Avulavirus/veterinária , Avulavirus/isolamento & purificação , Doenças das Aves/epidemiologia , Doenças das Aves/transmissão , Aves/virologia , Monitoramento Epidemiológico , Animais , Avulavirus/classificação , Avulavirus/genética , Infecções por Avulavirus/epidemiologia , Infecções por Avulavirus/transmissão , Infecções por Avulavirus/virologia , Doenças das Aves/virologia , Mar Negro , Análise por Conglomerados , Epidemiologia Molecular , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Estações do Ano , Análise de Sequência de DNA , Ucrânia/epidemiologia
20.
Avian Dis ; 56(4 Suppl): 1010-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23402128

RESUMO

The Azov and Black Sea basins are part of the transcontinental wild bird migration routes from Northern Asia and Europe to the Mediterranean, Africa, and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting for many different bird species. From September 2010 to September 2011, a wild bird surveillance study was conducted in these regions to identify avian influenza viruses. Biological samples consisting of cloacal and tracheal swabs and fecal samples were collected from wild birds of different ecological groups, including waterfowl and sea- and land-based birds, in places of mass bird accumulations in Sivash Bay and the Utlyuksky and Molochniy estuaries. The sampling covered the following wild bird biological cycles: autumn migration, wintering, spring migration, nesting, and postnesting seasons. A total of 3634 samples were collected from 66 different species of birds. During the autumn migration, 19 hemagglutinating viruses were isolated, 14 of which were identified as low pathogenicity avian influenza (LPAI) virus subtypes H1N?, H3N8, H5N2, H7N?, H8N4, H10N7, and H11N8. From the wintering samples, 45 hemagglutinating viruses were isolated, 36 of which were identified as LPAI virus subtypes H1N1, H1N? H1N2, H4N?, H6N1, H7N3, H7N6, H7N7, H8N2, H9N2, H10N7, H10N4, H11N2, H12N2, and H15N7. Only three viruses were isolated during the spring migration, nesting, and postnesting seasons (serotypes H6, H13, and H16). The HA and NA genes were sequenced from the isolated H5 and N1 viruses, and the phylogenetic analysis revealed possible ecological connections between the Azov and Black Sea regions and Europe. The LPAI viruses were isolated mostly from mallard ducks, but also from shellducks, shovelers, teals, and white-fronted geese. The rest of the 14 hemagglutinating viruses isolated were identified as different serotypes of avian paramyxoviruses (APMV-1, APMV-4, APMV-6, and APMV-7). This information furthers our understanding of the ecology of avian influenza viruses in wild bird species.


Assuntos
Animais Selvagens , Vírus da Influenza A/classificação , Influenza Aviária/epidemiologia , Animais , Aves , Mar Negro , Vírus da Influenza A/genética , Influenza Aviária/virologia , Filogenia , Vigilância da População , Ucrânia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA